How the electrification will impact the Fluid power business?

Mathieu Beaurain

CETOP, 10 juin 2021

Introduction

Hydraulics : most important technologies in off-road machines (in lifting applications or very high power requirements...)

Electrification: a trend in recent years (tools and mobility function)

Combination of hydraulics and electricity -> Electrohydraulic :

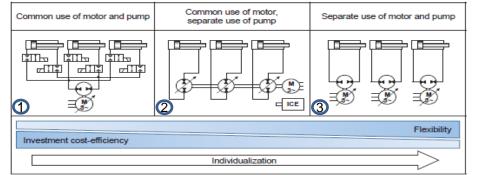
- Greater precision and dynamics
- Compactness
- Energy efficiency and confort in use
- Simplicity and flexibility

Sustainable development (all concerned by the migration towards the electrification of vehicles/transport)

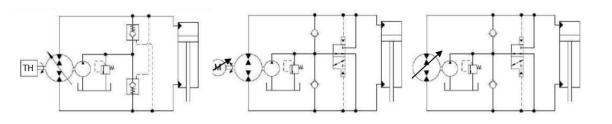
- Support the technological disruption linked to the reduction of energy consumption, which has a strong impact on the technological building blocks used in power transmission
- Strong regulatory and normative constraints on the use of fossil fuels
- Identify new solutions for the reduction and acceptability of noise in electricity

Industry of the future

- Take up the challenge of modelling by developing hybrid simulation (Model Base Design) and test methods for system design processes
- Develop experimental methods generating physical data and quantities upstream of the IOT value chain


Individualisation of power sources

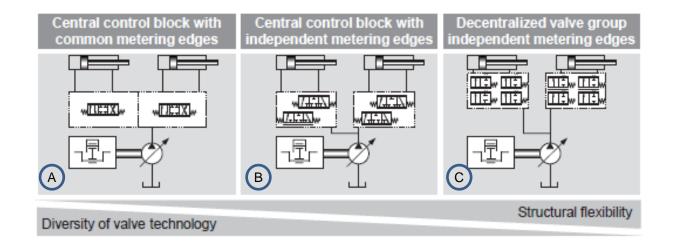
Conventional versus individualised architecture


$$P_{installed} = max_t((\sum_n Q_n) * (maxP_n + P_{LS}))$$
 Versus

$$P_{installed} = \sum_{n} (\max P_n * \max Q_n)$$

Pumps Individualisation: 3 architectures

Control by variable pump



Advantages of using several variable pumps:

- Limitation of losses due to load sensing
- Improved efficiency by optimising the operating point
- Energy savings (e.g. ~20% for the HydroGear system)
- Improvement of the flow rate rise • time while lowering the maximum speed

Individualisation of the distribution components

Advantages :

- Increase in the number of valves
 - Separation of actuators
 - Independent control of input and output
 - Optimisation of control
 - Energy-saving operation (recovery)

- Simplification of valve technology
 - Use of 2/2-way valves
 - Standardisation of technology
 - Flexible system configuration (decentralised layout)

Decentralisation

Definition:

Decentralisation requires individualisation (the reverse is not true)

Moving sources closer to applications

- Impacts:
 - Reduction of pipe length
 - Impact on pressure losses
 - Regular: less length
 - Singular: fewer fittings
 - Impact on size

Evolution of regular pressure loss in laminar flow as a function of length

18

- Diameter reduction possible but not necessarily very significant
- Thermal behavior need to be check

etim

Conclusion on Individualisation and decentralisation

Energy saving

- Reduction of pressure losses
- Working at the best efficiency point (motor and pump)
- Energy recovery
- System optimisation for each function

- Obstacles
 - Cost
 - Integration effort
 - Potentially higher installed power
 - Larger total mass

Concurrence of hydraulic components

- Linear actuators
 - Hydraulic solutions
 - Electrical solutions
 - Electrohydraulic solutions : EHA –
 - Pneumatic solution
- Rotation actuators

- Industry and off-road machine
- For positioning use and small effort
- Aero and new generation of electrohydraulic off-road machine
- Industry and very high speed process
- Hydraulic motor (open circuit, closed circuit)
- Electrical motor + reducer or e-Axle
- Noise aspects
 - Closely Linked to speed of hydraulic components
 - 3 main sources of noise on electrical component : mechanical (bearings, gear...), aerodynamic (ventilation, turbulence...), magnetic noise

Current R&D project and further work

Implementation in a real case study

2. Impact on high speed

Component Migration Noise/Vibration Lubrification Efficacity Cost Integration Conception Noise/Vibration Validation CEM Noise/Vibration System Composant

1. Electrical power source

3. Electrification of a machine

Current R&D project and further work

Problems arising from the "real world" :

- Point of vigilance on the total electrification of functions (brakes, brake holding, heating, dimensioning, mechanical integration, energy, etc.).
 - Power compromises:
 - Power and speed ranges to be adapted
 - Use of a variable speed drive
 - » Allows the speed of the electric motor to be adapted to that of the hydraulic pump
 - » Check the reversibility requirement of the application (Define the drive architecture)
 - Evolution of the voltage levels
 - Possibility of using 48V and/or 700V (DC)
 - Cooling system
 - Liquid cooling & possibility to individualise the cooling (Allows deportation)
 - Autonomy and energy recovery
 - Combination of electric and hydraulic : Better regeneration capacity
- Problems encountered, either by removing hydraulics or adding electricity

Cetim

